- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Barrett, Clark (1)
-
Katz, Guy (1)
-
Ostrovsky, Matan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
Bouajjani, Ahmed (1)
-
Holk, Lukas (1)
-
Wu, Zhilin (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bouajjani, Ahmed; Holk, Lukas; Wu, Zhilin (Ed.)Convolutional neural networks (CNNs) have achieved immense popularity in areas like computer vision, image processing, speech proccessing, and many others. Unfortunately, despite their excellent performance, they are prone to producing erroneous results — for example, minor perturbations to their inputs can result in severe classification errors. In this paper, we present the CNN-ABS framework, which implements an abstraction-refinement based scheme for CNN verification. Specifically, CNN-ABS simplifies the verification problem through the removal of convolutional connections in a way that soundly creates an over-approximation of the original problem; it then iteratively restores these connections if the resulting problem becomes too abstract. CNN-ABS is designed to use existing verification engines as a backend, and our evaluation demonstrates that it can significantly boost the performance of a state-of-the-art DNN verification engine, reducing runtime by 15.7% on average.more » « less
An official website of the United States government
